EVALUATION OF CAPILLARY END EFFECT IN WATER-OIL PERMEABILITY TESTS USING MULTIPLE FLOW RATES TECHNIQUE

* Santos, I. C. A. B. A.*¹; *Eler, F. M.*²; *Nunes, D. S. S.*²; *Couto, P.*

¹ Federal University of Rio de Janeiro, Civil Engineering Program, Rio de Janeiro, RJ, Brazil
² COPPETEC, Rio de Janeiro, RJ, Brazil

Received: 22.11.2020 / Revised: 14.12.2020 / Accepted: 14.12.2020 / Published on-line: 07.01.2021

ABSTRACT

Relative permeability curves obtained in laboratory are used in reservoir simulators to predict production and establish the best strategies for an oil field. Therefore, researchers study several procedures to obtain relative permeability curves. Among these procedures are the multiple flow rates injection methods. Thus, this work proposes to develop an experimental procedure with multiple increasing flows. To make this feasible, simulations were initially carried out at CYDAR, aiming to establish flow rates and time necessary to achieve system stabilization, within the limits of the equipment. After that, tests were carried out establishing the minimum time of 5 hours to stabilize the oil production, and the differential pressure at each flow rate. The accounting and minimization of the capillary end effect in these tests were also evaluated. Capillary pressure constraints contributed to minimize the number of possible solutions to the optimization problem improving the fit of solutions for a specific case.

KEYWORDS

relative permeability; multiple flows rates; CYDAR; capillary end effect

¹ To whom all correspondence should be addressed.
Address: Federal University of Rio de Janeiro, Civil Engineering Program, Av. Athos da Silveira Ramos, 149, Technology Center – Bloco B, sala 101 – Ilha do Fundão, Rio de Janeiro, RJ, Brazil.
Phone number: +55 (88) 98883-6855 | e-mail: isabelly.santos@coc.ufrj.br
doi:10.5419/bjpg2020-0019
1. INTRODUCTION

Relative permeability is one of the most important data for reservoir engineering. Relative permeability curves obtained in the laboratory are used in reservoir simulators to predict oil production and decide the best strategies when exploring an oil field (Cruz, 2015).

The tests to obtain these curves, in a water-oil system, are performed on rock samples from the reservoir or on representative outcrops. These are often subjected to displacement tests in an unsteady-state regime, in which an attempt is made to repeat fluid displacement processes that take place in the oil reservoirs during secondary recovery activities. In the test, capillary and viscous forces act in rock sample, as well as in petroleum reservoirs (Al-Mjeni et al., 2011; Cruz, 2015).

Usually, this experiment is conducted by injecting water at a single constant flow rate. The experimental data obtained (differential pressure and produced volume of oil) is treated using analytical techniques, such as that of JBN (Johnson et al., 1959), or through history matching, to obtain parameterized relative permeability curves (K_r).

However, these tests have limitations since conditions that are intrinsic to the laboratory. Real reservoir flows present different characteristics, such as the presence of capillary end effect. This happens due to a discontinuity in capillary pressure at the end sample outlet, causing an erroneous residual oil saturation (Gupta & Maloney, 2016; Hadley & Handy, 1956).

Besides, many mathematical methods used to infer K_r, such as the JBN, do not consider the capillary forces. Also, the history matching method can be limited since it does not guarantee the uniqueness of solution if used in experiments with only one injection flow rate. This can generate bias in the relative permeability obtained in the laboratory (Ucan et al., 1997).

In the context described, the present work proposes to develop an experimental procedure of multiple flow rates to obtain the relative permeability curves, based on the theoretical methodology proposed by Lenormand and Lenormand (2016).

The greatest advantage of this method is the accounting of the oil that was retained in the sample due to the capillary end effect. Furthermore, this method makes it possible to determine both capillary pressure (P_c) and relative permeability (K_r) in a single experiment while adding a capillary pressure constraint to improve the uniqueness of the history matching process.

2. RELATIVE PERMEABILITY EXPERIMENTS

During the reservoir drilling process, rock cores are extracted, undergoing several laboratory tests to determine properties of relevance for oil extraction, such as porosity, permeability, and capillary pressure. Laboratory experiments must be carried out at reservoir conditions so that the results obtained are representative of the field.

In Figure 1, one of the most used core flooding experiments to determine K_r- the unsteady state relative permeability- is presented. The Unsteady-State (USS) method consists of displacing the fluid that saturates the porous medium by injecting another fluid at constant flow or constant pressure (Rios et al., 2012).

For a water-oil system, an oil-saturated core with immobile water (S_{wi}) is first accommodated in the holder. This condition is representative of the initial state of the reservoir before the injection of fluids for its exploitation. Then, it is performed a water injection in the inlet face, while oil is produced at the outlet face. During the test, the produced oil volume and the differential pressure across the core are recorded.

The most used laboratory procedures in the water-oil relative permeability tests consist of the injection of water at a single flow rate, obtaining the residual oil saturation (S_{or}). The S_{or} can be affected greatly by the capillary end effect (Bauget et al., 2012). Thus, to minimize laboratory artifacts, a sudden increase in flow rate (bump flow) is performed at the end of the test. There is often an additional production of oil-related to the increase in differential pressure caused by the bump flow (Cruz, 2015).

For identification purposes, the residual oil saturation (S_{or}) will be called remnant S_{or} (S_{or}^{rem}) when it is obtained in a test with only one injection rate, and bump S_{or} (S_{or}^{bump}) when there is an increase in flow rate (bump flow).
3. CONVERTING LABORATORY DATA TO RELATIVE PERMEABILITY

Relative permeability curves are inferred from differential pressure and oil production data collected in these tests. The solution techniques normally applied are analytical solutions, such as JBN (Johnson et al., 1959) and Jones and Roszelle (1978), based on the Buckley-Leverett model for the displacement of immiscible fluids. This method assumes simplifications such as one-dimensional flow, negligible capillary pressure, and homogeneous porous medium. These simplifications hardly represent the reality of the displacement tests performed in the laboratory (Ambrus et al., 2004; Viegas, 2017).

Another technique very used is the history matching (Rosa et al., 2006), which is a non-linear regression problem. The procedures of this nature use parameterized K_r curves in a numerical flow simulator and an optimization process finds the parameters that best represent the experimental data. In this type of technique, the flow model can be simplified or not.

The advantage of this method is the possibility of including all effects that may be relevant in the actual displacement process, such as capillary pressure, medium heterogeneity, fluid compressibility, or gravity (Ambrus et al., 2004; Wang, 2014). However, many software that use the non-linear regression method do not include these effects in the theoretical model, analyzing the data up to S_{or}^{rem}, as in JBN (Cruz, 2015).

4. MULTI-STEP PROCEDURE

The multiple flow rates test should be considered over the traditional one (single flow rate plus bump flow), even if that lasts longer than this. Because the experiments in several increasing flow rates provide K_r and P_c curves simultaneously (Bauget et al., 2012).

In the technique proposed by Lenormand and Lenormand (2016), the test starts by injecting water into the sample at constant flow until oil production and differential pressure stabilize. Then, the flow rate is increased until the new stabilization is achieved. This process is repeated using 5 to 10 steps of injection rates. With each rate, additional oil is produced and the average water saturation increases. With these data, it is possible to account for the capillary end effect and for the amount of oil that was retained due to this phenomenon. At the end of the test, S_{or}^{rem} is expected to be closer to the real S_{or} (Gupta & Manoley, 2016).
5. MATERIALS AND METHODS

5.1 Materials

The rock samples used were homogeneous outcrops of the Berea Buff formation, obtained from Kocurek Industries. To minimize the influence of the type of sample in the tests, the same 20 cm core was split into smaller cores, approximately 5 cm each. The basic properties of these samples are shown in Table 1.

EMCA PLUS 70 was the fluid used as oil phase and a brine with a composition equivalent to that of the Brazilian Pre-Salt fields was used as aqueous phase. Physicochemical properties of fluids under test conditions are shown in Table 2.

5.2 Methods

The USS water-oil relative permeability experiment at laboratory scale (Figure 2) followed the sequence of procedures proposed by Viegas (2017):

1. Cleaning the sample in Soxhlet apparatus, using methanol and methylbenzene (toluene);
2. The routine core analysis to obtain the basic properties of the samples, such as absolute permeability and effective porosity;

Table 1. Properties of the sample and fluids used in the USS experiment multiple flows.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Length L (cm)</th>
<th>Diameter D (cm)</th>
<th>Absolute permeability K_{abs} (mD)</th>
<th>Porosity ϕ (frac.)</th>
<th>Porous Volume V_P (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>4.78</td>
<td>3.82</td>
<td>597</td>
<td>0.225</td>
<td>11.99</td>
</tr>
<tr>
<td>Sample 2</td>
<td>4.84</td>
<td>3.82</td>
<td>602</td>
<td>0.227</td>
<td>12.24</td>
</tr>
<tr>
<td>Sample 3</td>
<td>4.9</td>
<td>3.82</td>
<td>601</td>
<td>0.228</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table 2. Physicochemical properties of fluids at 21°C and ambient pressure.

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Density ρ (g/cm³)</th>
<th>Viscosity μ (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>0.856</td>
<td>23.0</td>
</tr>
<tr>
<td>Brine</td>
<td>1.142</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Figure 2. Schematic diagram of the relative permeability equipment under laboratory conditions.
3. Total saturation of the samples with the brine of composition equivalent to the water of formation of the fields of the Brazilian Pre-Salt;

4. Centrifugation of samples in an oil environment to obtain irreducible water saturation (S_{wi});

5. Accommodation of the core sample on a hydrostatic confinement cell, using 1,000 psi of confining pressure;

6. Measurement of effective oil permeability at irreducible water saturation (K_{ro}@S_{wi});

7. Displacement of mineral oil by injection of brine to the state of residual oil saturation (S_{or}), with monitoring of oil production (N_P) and differential pressure (ΔP):

 7.1. With a constant flow of 1 cm3/min plus a bump flow of 4.0 cm3/min in the traditional test.

 7.2. With five flow levels in the multi-step test: 1.0, 2.0, 4.0, 8.0, and 10 cm3/min.

8. Measurement of effective water permeability in S_{or}.

Experimental data was used to estimate relative permeability and capillary pressure by history matching. The software CYDAR$^\text{®}$ was used to estimate the parameters of the models used: LET model (Lomeland et al., 2005) for relative permeability and $\log(S^B)$ model (CYDAREX, 2018) for capillary pressure.

6. RESULTS AND DISCUSSIONS

Figure 3 shows the experimental data from Sample 1, in which water was injected at a flow rate of 1.0 cm3/min for 23 hours. At the end of this first injection, 6.25 cm3 of oil was produced. The bump flow, with a flow rate of 4 cm3/min, was carried out afterwards, and the ΔP stabilized after 1 hour. Following, there was no additional oil production. Returning to a flow rate of 1.0 cm3/min, the ΔP stabilized after 30 min. Thus, the traditional test with the bump flow was completed in 24.5h.

Figure 4.a shows the capillary pressure curve estimated for the imbibition test. As shown by Abdallah et al. (2007), the sample showed results from a water-wet sample, where the capillary pressure remains positive during most of the saturation range, as shown in Figure 4.a. Thus, water saturation preferably increases first in the smallest pores, due to wetting forces, so the displacement occurs from the smallest to the largest pores, and the water increasingly occupies the throat of pores that were previously filled with oil, as shown in Figure 4.b, which presents the relative permeability.

According to Masalmeh (2012), water-wet samples have very well-defined residual oil saturation and are insensitive to the flow rate, that is, S_{or} is not affected by the increase in flow rate. Analyzing Figures 3 and 4, it is possible to infer that the sample is water-wet, so there was no additional production associated with bump flow, so S_{or}^{rem} was equal to S_{or}^{bump} (Figure 3.b).
In Figure 5, data of Samples 2 and 3 are presented, which were submitted to the multistep process. In Figure 5.a identifies that in the first test flow, Sample 1, 7.80 cm³ of oil was produced, and, at the end of the 30-hour test, 7.93 cm³ was produced. That is, even when increasing the flow 10 times, there was a gain of only 1.7% in the volume of fluid produced; a flow of about 1.0 cm³/min.

In Sample 3, shown in Figure 5.b, the first flow of 1.0 cm³/min produced 7.25 cm³ during the initial 5 hours, ending the test with 7.50 cm³ of displaced oil. Thus, the 10-fold increase in flow provided a small gain of 3.4% of the oil produced about the initial flow.

Capillary pressure and relative permeability curves, presented in Figure 6 and Figure 7, respectively, fitted the experimental data with precision, as shown in Figure 5. In Figure 6, the P_c curves are positive in most of the water saturation range, representing water-wet samples. Also, adapting the calculation of the USBM index for the
imbibition test, which measures the wettability using the areas under the positive and negative capillary pressure curves, this water wettability is confirmed, since the results are values greater than 1 (Abdallah et al., 2007).

Besides, interpreting the K_r curves in Figure 7, one can notice that water begins to enter the smaller pores first. As the water saturation increases, the pores are filled from the smallest to the largest sequentially, as well as a preferably wettable sample by water, as explained by Crotti (2008).

The average water saturation $\langle S_w \rangle$ versus capillary pressure data presented in Figure 6 was obtained by the procedure proposed by Lenormand and Lenormand (2016). This procedure assumes that at the end of each flow rate, as oil production stops, the oil phase is not moving, therefore the differential pressure for this phase equals to zero (P_o). This implies that the differential pressure measured across the sample is the water phase differential pressure (P_w) (Figure 8 and Equation 1). Equations 2 and 3 demonstrate how these calculations are performed.

\begin{align}
P_w &= \Delta P \\
P_c &= P_o - P_w = 0 - \Delta P \\
P_c &= -\Delta P
\end{align}

Points of P_c vs $\langle S_w \rangle$ were used in CYDAR as experimental constraints to the estimated capillary pressure, improving the solution to the specific problem faced by the history matching process. Comparing experimental and estimated data, it is possible to conclude that the constraint was satisfied with great precision.

Saturation profiles at the end of each flow rate were also obtained by the history-matching process (Figure 9). It is possible to notice that the increase in flow rates causes an increase in the average water saturation and, consequently, an increase in oil production, as shown in Figure 5.
Also, the saturation profiles become more uniform along the length of the sample as the flow increases. In Figure 9, it is possible to observe that oil is trapped at the end of the core sample, thus, there is a wettability to oil and these samples are mixed-wet (Peters, 2012).

7. CONCLUSIONS

Relative permeability experiments were carried out in three sandstone samples of the same petrophysical properties, comparing different methodologies. Sample 1 used a conventional test while Samples 2 and 3 were conducted with multiple flow rates. From the data collected from the samples, it is possible to conclude that:

- In high permeability water-wet samples, the stabilization of the differential pressure and produced volume is achieved in 5 hours, at each imposed flow rate;
- Multiple flow rates methodology can minimize and account for the capillary end-effect, since there is additional production after the first flow, even if minimal;
- Relative permeability and capillary pressure curves obtained simultaneously in the same experiment reduce the problem of non-uniqueness of the solution, associated with the non-linear regression calculations applied in the historical adjustment.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support provided by CENPES/PETROBRAS, LRAP/COPPE/UFRJ, and CAPES.

8. REFERENCES

Crotti, M. A. Motion of fluids in oil & gas reservoirs. InLab, 2008.

Cruz, D. A. Estudo das curvas de permeabilidade relativa água-óleo considerando o efeito de forças capilares na produção adicional de óleo. 138 f. Dissertação (Mestrado em Engenharia Civil) - Programa de Pós-graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.

Viegas, V. T. *Comparação entre os regimes transiente e permanente na obtenção de curvas de permeabilidade relativa*. 111 p. Dissertação (Mestrado em Engenharia Civil) - Programa de Pós-graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. (in Portuguese)