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ABSTRACT 
This work shows a procedure to build fast and reliable numerical models with WAG-CO2-rich injection 
scheme. This novel and practical approach to numerical tuning high-complexity reservoir models can save 
days or even months of work. Improving step 2 of the 12-step reservoir characterization and modeling 
methodology proposed by Schiozer et al. (2015) leads to an optimization of the numerical control of the 
model based on the critical compositional numerical parameters and performance diagnostics. We show 
the results of a probabilistic risk analysis application. For the complex case scenario presented, results 
show that applying the proposed technique can save roughly 80% of the total time spent to perform a risk 
study. Furthermore, we found that time saving tends to increase as the number of simulations increases. 
This work improvement comes from making a methodology that includes both compositional and black-oil 
numerical solver parameters in every step of the numerical tuning optimization, rendering a broader and 
more robust method. 
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1. INTRODUCTION 

This work focuses on improving step 2 of the 12-
step methodology proposed by Schiozer et al. 
(2015) (Reservoir characterization and modeling). 
The main goal of this work is to optimize the 
numerical control of the model (tuning a 
compositional model) based on the critical 
compositional numerical parameters and 
performance diagnostics. The proposed 
methodology can be performed for black-oil and 
compositional reservoir numerical models with an 
appropriate parameterization. The present study 
offers an opportunity to minimize the total time 
spent running a compositional model. The dual-
porosity and dual-permeability model used has a 
defined strategy of an offshore CO2-rich water-
alternated-gas (WAG) miscible reinjection, both 
with essential diagnostics of factors affecting 
computational time. This work allows the use of 
this model in compositional cases, which has 
already been done for black oil cases on any 
commercial reservoir simulator. 

Li et al. (2014) performed a study concerning 
numerical tuning. According to the authors, the 
numerical tuning approach proved valid for 
improving the computational run time of 
simulation models, especially for large-scale 
complex ones. Following their study, one goal of 
numerical tuning is to find a set of numerical 
parameter values that make the simulation run 
faster with acceptable material balance error. In 
their work, the authors created a main global 
objective function, which is the weighted average 
of two functions (simulation run time and material 
balance error). They, then, optimized it using a 
single objective optimizer. To perform the 
numerical tuning, they used the optimizer Multiple 
Objective Particle Swarm (MO-PSO) on a submodel 
of a real field SAGD (Steam Assisted Gravity 
Drainage) model. Their MO-PSO aimed at reducing 
both the CPU run time and material balance error. 

Card et al. (2014) performed an intricate work 
involving speedup and numerical tuning of a sizable 
full-field SAGD process simulation. The authors 
presented a workflow that enables running an 
extensive, multi-pad, full-field, multimillion cell 
SAGD simulation. Their workflow has three main 
steps: (1) generating geomodels that are easier for 
simulation, (2) using experimental design and 3D 
submodel choice for numerical tuning, and (3) 

using 2D cross-section models to calibrate dynamic 
grid refinement for the entire 3D model. All steps 
aimed to enhance the numerical performance of 
multi-pad SAGD models. This same work includes a 
24-SAGD-well-pair model with 2.52 million grid 
blocks, simulated for a ten-year forecast. The 
simulation time was reduced from 42 to 7 days on 
eight central processing units (CPU's) six times 
faster, using the proposed workflow. The authors 
claimed that, while this methodology is entirely 
generic and despite being developed for the SAGD 
process, it can be applied to any large simulation 
model of any process. 

Avansi et al. (2019), from which our work was 
improved for the continuous scientific 
development on fast and reliable reservoir 
numerical models, also addressed the numerical 
tuning approach as crucial to reducing 
computational time and accelerating some 
probabilistic processes. Their approach included 
elements such as uncertainty analysis, production 
forecast, and decision analysis. In contrast to the 
work of Li et al. (2014), Avansi et al. (2019) 
addressed general parameters from the Black-Oil 
model for the overall solver influence on run time. 
As a result, they developed a methodology 
consisting of numerical parameter choice, 
sensitivity analysis, optimization, diagnosis, tuning, 
and case study to provide reliable and practical 
initial values and configuration of the numerical 
section during simulations. All methodology steps 
require expert knowledge of the reservoir geology 
and reservoir properties that lead to a reduced 
simulation time, optimizing the number of solver 
failures, timestep cuts, and material balance error 
over the default configuration of the simulation 
model. The results of two case studies by Avansi et 
al. (2019) proved that we could: (1) accelerate the 
execution time up to 200% faster than the base 
case with default numerical section, (2) reduce 
failures and cuts, and (3) keep the material balance 
error within an acceptable value. Based on their 
conclusions, proportionally to the number of 
applications and runs, and varying with the 
heterogeneity of the simulation model, their work 
proved that it is possible to optimize the time spent 
in the reservoir team's frequent tasks and keep the 
material balance error and geological consistency 
by understanding the numerical behavior and 
optimizing the numerical section. 
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The work of Avansi et al. (2019) also enables 
smooth use of the controls and values of the 
numerical solver of the simulation model in 
reservoir simulation applications before running a 
massive number of simulations, which drastically 
reduced the run time. 

Avansi et al. (2019) stated that efficient models 
run with the lowest effort proportional to the 
relevance of the study, availability of resources, 
and schedule. 

To create complex and large simulation models, 
one must build these through a number of steps 
before starting any application in reservoir studies. 
One of these steps involves improving the 
numerical parameters of the numerical solver in 
the model to obtain a reliable production forecast 
(material balance) and save on execution time 
related to probabilistic reservoir management and 
development. 

According to Avansi et al. (2019), reservoir 
simulation teams often do not tune the best 
numerical section to run efficient simulation 
analysis tasks. An inappropriate numerical section 
can increase run time for a simulation task 
significantly. Rios et al. (2020) proposed a very 
efficient workflow, which evolved from Avansi et 
al. (2019), by employing submodels to achieve 
numerical tuning for Black-Oil models with a 
reduced elapsed time. Most importantly, it allowed 
us to improve with the current numerical tuning 
step from Rios et al. (2020) for compositional 
models and make the procedure of Avansi et al. 
(2019) more general and valid for compositional 
cases. 

Aside from the numerical parameter tuning, 
there are modeling details that substantially affect 
the simulation time, such as fracture implicitness, 
matrix-fracture fluid transfer functions, relative 
permeability curve shape, and grid orientation. 

The innovative contribution of this work is to 
propose, for a complex compositional model of a 
realist offshore CO2-rich WAG, a general 
methodology to optimize the simulation time of a 
WAG process numerically, achieving 80% of 
reduction in computational time by exploring the 
effects of tuning numerical solver parameters and 
submodels on the numerical performance of the 
simulation. This methodology is broader and more 
general than the previous ones because additional 

parameters exclusive of the compositional 
numerical solver are included as much in the 
parameterization and sensitivity analysis as in the 
numerical optimization. There is no registered 
compositional case of numerical tuning as there is 
of Black-Oil. 

1.1 The problem 

After developing a reservoir simulation model, 
engineers use it in their daily tasks with one-run or 
multiple simulations to provide evaluations. 

In this context, no particular care is given to the 
numerical section choice and key modeling options 
defining the numerical efficiency of the simulation. 

Often, the default numerical section can be 
considered inefficient, while increasing the 
execution time also can twist the results with high 
material balance error. 

There are cases where default numerical section 
and default modeling options can cause massive 
convergence failures and numerous timestep cuts, 
with interruptions to the simulation because of 
numerical failures or long execution time. When 
this happens, engineers often adjust the numerical 
parameters to deal with the issue in their daily 
tasks. If the problem involves a compositional 
model, many more numerical parameter sections 
are involved, rendering any manual or default 
numerical parameter adjustment very time-
consuming. Occasionally, when the execution time 
issue cannot be solved, a more drastic upscaling is 
made to accelerate the runtime, instead of directly 
tuning the numerical solver setup of the model or 
testing parameters that are equally essential for 
speed efficiency and interaction with the 
simulation model. These time-consuming 
simulation models lead to many simplifications in 
the model, which can be avoidable. Also, these 
simplifications can be geologically inconsistent. 

We believe engineers do not diagnose options 
critical for numerical performance for the reasons 
explained above, and less on compositional 
problems. They also lack this consideration before 
choosing a drastic upscale. Moreover, they do not 
calibrate the numerical section to accelerate the 
simulation model before using it on a task. The 
nature of the problem enhances the difficulties of a 
compositional problem, such as gas recycling, 
complex production systems, and multiphysics, 
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making it even more critical for the performance of 
numerical tuning. The focus of the current work is 
to adapt a useful and efficient method to improve 
the execution time of any kind of reservoir models 
and filtering material balance error acceptance 
parameters and numerical performance criteria. 

1.2 Motivation 

The excessive use of default or auto-tuned 
numerical parameters by engineers that work with 
reservoir simulation is widespread, even for the 
use of automatic tuning methods (adaptative 
timestep control, ADTSC on GEM) with the default 
options activated, due to the short time for 
checking the quality of the numerical model before 
starting reservoir studies. This procedure can harm 
the execution performance and obtain models with 
material balance error that are above the 
acceptance criteria. This is, therefore, our primary 
motivation: to provide support for all scientists 
working with practical procedures in reservoir 
simulation to tune a numerical model in a shorter 
period, using submodels for compositional 
problems that will yield better results than any 
option. In summary, the amount of time saved by 
tuning the model tends to increase as the number 
of applications increases. 

There is no case registered in the literature for 
optimizing the numerical performance of 
compositional simulations, therefore, our work is 
innovative in this subject. 

The studied case involves the use of 
compositional WAG simulation, with reinjection of 
total produced CO2. This is one application 
necessary to study and simulate pre-salt scenarios. 

1.3 Objectives 

The main aim of this work is to propose a 
method to reduce the time for decision making 
using high time-consuming models under WAG 
injection, and to obtain reliable and consistent 
compositional numerical models to be used in daily 
routines of reservoir simulation studies, especially 
those with features from the pre-salt locations in 
Brazil. 

Additional goals are: 

 To develop a methodology compatible with 
different kinds of simulation, compositional, or 

Black-Oil. Most methods developed previously 
are based on black oil, and there are several 
solver and parameter differences from this case. 

 To improve numerical efficiency of 
compositional models in complex cases and 
achieve a comparable bulk gain in probabilistic 
risk analysis. 

1.4 Assumptions 

This work aims to develop a method to reduce 
the execution time of compositional models 
without losing accuracy. For this, we emphasize the 
assumptions considered in this work: 

 Oil phase behavior is represented by 

compositional Peng-Robinson (Peng & 

Robinson 1978) EoS, 7 component PVT model; 

 Reservoir simulation model is compared to 
default automatic parameter and settings; 

 Fractures are represented by dual porosity, dual 
permeability model; 

 Capillary pressure modeling is considered; 

 Reservoir above bubble point pressure. Miscible 
gas injection is performed; 

 History of production information from one 
wildcat well is available, i.e., focus on field 
development; 

 Total produced gas reinjection; 

 Modeling of the production system on the 
producer wells using multiphase flow tables; 

 A single stochastic optimization is performed. 
We assumed a commercial software method, 
Yang et al. (2007), to tune the numerical 
settings of the model. 

 

2. METHODOLOGY 

The proposed methodology is improved from 
the work of Rios et al. (2020), with modifications 
highlighted in orange. 

The steps on the workflow (Figure 1) from Rios 
et al. (2020) are adopted, with five main 
differences in steps 1, 2, 7, 8, and 9. 
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Step 1 is vital for our proposed study because 
we consider as a base case run a model with all the 
default numerical control provided by the 
commercial simulator. Though we do not use any 
automatic calibration on our robust tuning (such as 
ADTSC), and we start from a simpler default base 
case (no automatic calibration) and perform better 
than any other, we need a control sample, so our 
best case is compared to a better base case than 
our simpler default. That base simulation runs 
either with or without the automatic default, which 
is quicker than the simpler default itself to test our 
capabilities. This automatic option in the 
compositional numerical simulator enables 
adaptive algorithms for timestep size selection and 
tunes numerical parameters to improve 
performance in a limited way. The way we defined 
our default case makes our comparison more 

impressive in terms of challenges and 
computational time saved because its performance 
was far superior to the automatic default. One 
must note that automatic enhancement is mutually 
exclusive of our robust tuning, which is refined and 
more complex to implement. It is possible to use 
one or another, but they cannot overlap given the 
nature of automatic numerical calibration. 

Step 2 is also crucial for our study. At this stage, 
we must define our acceptance criteria to validate 
the model within the required efficiency and based 
on the initial acceptance criteria. From the previous 
criteria, we improved the criterion for each of the 
numeric parameters defined for a compositional 
numerical simulation model. Table 1 includes the 
new criteria for this study. 

 

Figure 1. Workflow for optimization of numerical performance using submodels for a compositional reservoir 
simulation model. Modified from Rios et al. (2020). 

 
Table 1. Acceptance set of criteria of compositional model performance based on the expertise of the reservoir 

geoengineer and scientist. 

Computational 
Statistics 

Total(o+w+g) 
MBE Error,  

Number of Timestep 
Cuts (TSC) per 

Timestep (TS), % 

Number of Outer 
Nonlinear Iterations, 

Newtonian Cycles 
(NC) per Timestep (TS) 

Number of Solver 
Iterations (SI) per 
Newtonian Cycle 

(NC) 

Acceptance 
Criteria 

≤          ≤ 1.0 ≤ 1.5 ≤ 20 
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Step 7 defines an essential difference from 
previous works. Since we are dealing with a 
compositional simulation, the parameters involved 
are from a broader and more complex list. They are 
chosen in Step 7, with ranges picked from the 
reservoir engineer's experience. These same 
parameters are used in Step 8 for the sensitivity 
analysis and as input variables and optimization 
range in Step 9 for numerical tuning. 

Several parameters from Table 2 in Step 7 are 
familiar to Black-Oil configuration for numerical 
solvers. The information below provides a better 
understanding of these parameters. 

We focused exclusively on our chosen 
compositional solver parameters and in explaining 
their role. All ranges of the probability density 
function in the optimization were chosen based on 
the experience shared by reservoir engineers, 
scientists, and geoengineers. 

 The maximum and minimum timestep size is 
included in Black-Oil solvers as well as normal 
variations in pressure and saturation. The 
maximum timestep size is the upper limit 
allowed through the solver iterations. Usually, it 
is set to be exactly at the timestep informed by 
a keyword of date or time from the simulation 
file. Whereas the minimum timestep size is the 
lower limit allowed through the solver 
iterations. If the simulator is at the minimum 
timestep size and, for some reason, the 
numerical solution does not converge, the 
simulation is suspended because the timestep 
size cannot be smaller than the minimum 
defined previously. 

 Normal variation in global composition, on the 
other hand, is exclusive to the compositional 
solver. It specifies the typical changes in the 
composition's variables during a timestep. 

 Maximum changes in pressure and saturation 
are in Black-Oil solvers. These changes identify 
the maximum changes in saturation and 
pressure through a timestep. If the change in 
normal variation is above that set by the 
maximum change, then, the timestep is cut to 
keep the changes defined by the normal 
variation. 

 Maximum changes in global composition are 
exclusive to the compositional solver. This 
parameter specifies the maximum changes in 

the global compositions during Newtonian 
iterations. 

 The convergence of Newton's Method and 
Convergence Tolerance for Linear Solver are 
options in Black-Oil solvers too. It is used to 
define the convergence tolerance for the linear 
equation solver. The linear solver will stop if the 
condition specified by this keyword is satisfied. 
According to Avansi et. al. (2019) "For 
simplicity of explanation, we consider a linear 
equation Av = b, and the root-mean-square 
(rms) residual is r = b − Av. Then, when r(i)∕r(0) 
for the nth iteration is less than the 
convergence tolerance, the criterion is matched 
and will move to the next iteration." 

 Threshold Adaptative Implicit Switching to 
water saturation or hydrocarbon global mole 
fractions is exclusive of the compositional 
solver. When this parameter is used, an explicit 
grid block is switched during the current 
timestep to implicit if changes in water 
saturation or hydrocarbon component global 
mole fractions in the block exceed their normal 
variation default value on saturation or a 
normal variation on composition. The 
verification is done after the timestep has 
converged. 

 Maximum Number of Linear Iterations and 
Maximum Number of orthogonalization are 
parameters in Black-Oil solvers. This 
orthogonalization procedure is used to 
approximate factorizations and, then, 
accelerate the flow equations solver. It is 
important to note that this preconditioner is 
specific to the reservoir simulator used in our 
study. 

From Table 1, it is possible to check the 
performance of the base model and verify the need 
to tune numerical parameters. Experience is crucial 
for choosing a practical Total MBE error, TSC/TS, 
NC/TS, and SI/NC acceptance criteria and the right 
choice of those filters to improve the tuning 
convergence and result. 

They are included in the parameterization 
specific compositional numerical solver 
parameters, and these parameters are, then, run 
on sensitivity analysis and numerical tuning. The 
innovation from both previous studies is making 
compositional numerical tuning possible. 
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3. APPLICATION 

The application considered a compositional case 
for WAG EOR, which resulted from the 
implementation of a production strategy in the 
UNISIM-II-D-CO Benchmark (Correia et al. 2015), 
shown in Figure 2. 

The model's total mobile oil quality map is 
shown in Figure 3. 

In the next step, the model received an injector 
and producer well pattern generated by the study 
of Camacho (2017). Figure 4 displays all wells from 

the production strategy used in the proposed work. 

The model's permeability from one layer is 
shown in Figure 5. 

The model's porosity from one layer is shown in 
Figure 6. 

The final application for validating this 
methodology is building risk curves that will use 
uncertainty levels and probabilities for reservoir 
and technical attributes, such as production system 
availability. 

 

Figure 2. Overview of the model's water saturation. 

 

 

Figure 3. Overview of the model's quality map of the total mobile oil sum of all layers. 
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Figure 4. Injector and producer pattern imported for the WAG case – initial gas saturation distribution. 

 

 
Figure 5. Sample of permeability distribution from one layer in the model. 

 

 
Figure 6. Sample of porosity distribution from one layer in the model. 
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4. RESULTS AND DISCUSSION 

Step 1 – Run base case simulation 

The simulation model built is run to perform a 
diagnosis. It is essential to remember that, while 
our optimization case does not use automatic 
calibration, our target control comparative case is 
assumed to be the result of a single run with ADTSC 
automatic calibration with the default options of 
the commercial software. 

Step 2 – Diagnostics of the numerical 
model 

By verifying Table 1, the numbers for TSC/TS 
and NC/TS are inadequate and hinder model 
performance and, thus, justify the use of numerical 
tuning. The TSC/TS of 10.3 % is much higher than 
the acceptance criteria (less than or equal to 1.0), 
and the NC/TS of 2.0 is greater than 1.5. 

Since the numerical model has the potential to 
improve the numerical performance, we move to 
the next stage. 

Step 3 – Spatial analysis of the 
convergence problem 

In this case, many convergence problems result 
in timestep cuts, located on either fracture or 
matrix. Therefore, the model must be subjected to 
a more rigorous numerical evaluation involving 
tuning. There is a high numerical error density on 

reservoir borders. This is the criteria for picking a 
single submodel to cut in space and time the 
largest density of convergence problems from the 
base run. Also, this is the same submodel that will 
provide the optimized parameters after robust 
optimization for the entire set of models. The 
numerical parameters from optimizing the 
submodel are transferred back to the entire model 
and run again for consistency. 

The base model simulated requires a long 
forecast period (10,957 days). We must check if it is 
possible to perform a model cut-out to create a 
submodel from the problematic reservoir regions 
highlighted in the previous step (Figure 4) to, in 
turn, perform a feasible numerical tuning. From the 
analysis of Figure 7, it is possible to obtain a 
submodel from the selection of a region where the 
most frequent timestep cuts occurred by exceeding 
the maximum variations defined in the simulator 
(numerical section). Figure 7 shows the red F 
blocks, which stand for fracture on blocks with 
converging problems, while the blue M blocks 
stand for matrix of blocks with convergence 
problems. Convergence problems are the 
occurrence of repeated timesteps. 

Steps 4 and 5 – Submodel building 

Figure 8 shows the entire reservoir simulation 
model before and after the submodel creation. This 
step is essential to decrease the execution time of 
the entire numerical optimization. 

 

Figure 7. Spatial analysis of the convergence problem to build the submodel, selecting areas where the maximum 
number of cycles reached repeat timestep (without using the numerical tuning). 
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Step 6 – Cutoff simulation run time 

Apart from evaluating the space, the Newton 
Cycles frequency is evaluated to check the 
convergence of the principal equations of the 
numerical reservoir model through the total 
simulation time (Figure 9). 

From Figure 9, it is possible to observe that the 
number of occurrences of Newton cycles is quite 
uniformly distributed through the total simulation 
time, i.e., there is no characteristic frequency that 
helps us cut-off the simulation run time. As a 
result, it is not possible to reduce the simulation 
time during our numerical tuning. 

 

 

(a) Entire field (b) Submodel 

Figure 8. Building of submodel emphasizing producer and injector wells. 

 

 

Figure 9. Histogram of the number of Newton cycles per simulation run time. 
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Steps 7 and 8 – Numerical parameter 
definition and Sensitivity Analysis 

Several parameters from Table 2 are familiar 
with the Black-Oil configuration for numerical 
solvers. 

The numerical parameter optimization 
methodology employs all parameters as input; the 
computational time is then optimized through 
DECE optimizer (Yang et al., 2007), drawing 
candidate values and screening ranges of these 
parameters from step 7 to the best result of the 

objective function (elapsed run time). There is one 
additional hard constraint on the optimizer related 
to the MBE: there is a maximum MBE error allowed 
for acceptable convergence of         . 
According to CMG CMOST user manual (CMG 
2018), "The DECE optimization is an iterative 
optimization process that first applies a designed 
exploration stage and then a controlled evolution 
stage. In the exploration stage, the goal is to 
explore the search space in a designed random 
manner to get maximum information about the 
solution space. To do so, experimental design and 

Table 2. Numerical tuning parameterization (compositional parameters in red). 

Parameter 
Probability 
Distribution 

Default 
Value 

Probability Density Function (pdf) 

Maximum Timestep Size, days 
continuous 
(uniform) 

365 

0, x < 1 

1/(31-1), 1 ≤ x ≤ 31 

0, x > 31 

Minimum Timestep Size, days constant ≤        ≤          

Normal Variation in Pressure 
per Timestep, kPa 

continuous 
(uniform) 

1,000 

0, x < 300 

1/(2,500-300), 300 ≤ x ≤ 2,500 

0, x > 2,500 

Normal Variation in 
Saturation per Timestep, 
dimensionless 

continuous 
(uniform) 

0.15 

0, x < 0.05 

1/(0.20-0.05), 0.05 ≤ x ≤ 0.20 

0, x > 0.20 

Normal Variation in Global 
Composition, dimensionless 

continuous 
(uniform) 

0.15 

0, x < 0.03 

1/(0.15-0.03), 0.03 ≤ x ≤ 0.15 

0, x > 0.15 

Maximum Change in Pressure 
per Timestep, kPa 

constant 10,000 1,000,000 

Maximum Change in 
Saturation per Timestep, 
dimensionless 

constant 0.5 0.95 

Maximum Change in Global 
Composition, dimensionless 

constant 0.5 0.95 

Newton’s Method 
Convergence, dimensionless 

continuous 
(uniform) 

0.001 

0, x < 0.0001 

1/(0.0001-1.0000), 0.0001 ≤ x ≤ 1.0000 

0, x > 1.0000 

Convergence Tolerance for 
Linear Solver - Globally, 
dimensionless 

continuous 
(uniform) 

≤ 5      

0, x < 0.00001 

1/(0.00001-0.001), 0.00001 ≤ x ≤ 0.001 

0, x > 0.001 

Threshold Adaptive-Implicit 
Switching to water saturation 
or hydrocarbon global mole 
fractions, dimensionless 

constant  .0     

Maximum Number of Linear 
Iterations, dimensionless 

constant 40 100 

Maximum Number of 
Orthogonalizations, 
dimensionless 

constant 80 200 
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Tabu search techniques are applied to select 
parameter values and create representative 
simulation datasets. In the controlled evolution 
stage, statistical analyses are performed for the 
simulation results obtained in the designed 
exploration stage. Based on the analyses, the 
DECE algorithm scrutinizes every candidate value 
of each parameter to determine if there is a better 
chance to improve the solution quality if certain 
candidate values are rejected (banned) from being 
picked again. These rejected candidate values are 
remembered by the algorithm and they will not be 
used in the next controlled exploration stage. To 
minimize the possibility of being trapped in local 
minima, the DECE algorithm checks rejected 
candidate values from time to time to make sure 
previous rejection decisions are still valid. If the 
algorithm determines that certain rejection 
decisions are not valid, the rejection decisions are 
recalled and corresponding candidate values are 
used again." 

The sensitivity analysis for the screening of 
optimization parameters was made through 
Plackett-Burman experimental design. Sensitivity 
analysis on this step serves to screen all variable 
and variable range effects on the simulator run 
elapsed time. Also, it serves to discard those 
variables without ANOVA statistical significance in 
the next optimization step, to reduce the number 
of runs on the optimization process, and increase 
the effectiveness of the process. 

The sensitivity analysis was done for all the 
parameters above, but its result description does 
not need to be included because all the parameters 
analyzed influenced the optimization variables. 
Since the number of inputs is small, using all 
parameters simultaneously would not affect the 
optimization in any way, minimally raising the 
computational effort. 

Step 9 – Numerical optimization, 
evolution, and results 

The numerical optimization was done using the 
submodel described, considering: 

 Base case: simulation model is run once with 
numerical parameters pre-defined by simulator 
with automatic tuning option activated. This 
implies that we are competing with the case 
where the GEM simulator allowed adaptable 
algorithms (ADTSC) to select the size of 
timestep and adjust numerical simulation 
parameters to improve the numerical 
performance done throughout the simulation 
shown in Figure 7 as a black triangle; 

 Filtered: models selected from MBE error. 
Therefore, MBE error ≤ 1e-3, shown in Figure 7 
as orange circles; 

 Selected (with and without filter): models 
selected with shorter elapsed time, with and 
without the MBE error filter, shown in Figure 7 
as green squares and red diamonds. 

 

Figure 10. Results of numerical tuning for a single image. 
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Figure 10 displays the results of numerical 
tuning using the proposed submodel. 

Table 3 shows the numerical optimization best 
parameter results for the best case, which is the 
red dot in Figure 7. 

Step 10 – Numerical parameter 
consistency test 

After the optimization step (using submodels) 
and the selection of numerical parameters from 
the filtering step, a consistency test was performed 

for these same optimized numerical parameters, 
from what was optimized on the submodel, to run 
on the original model (without model cut-out) in 
local machines to ensure that the same 
computational conditions and bottlenecks are 
respected. 

Results show that the default model using 
adaptive timestep control (keyword for numerical 
tuning using the commercial simulator) with a 
single run takes an elapsed time of 41,904 seconds 
(12 hours). While the calibrated model without 
automatic tuning and with our procedure takes an 

Table 3. Numerical tuning optimization results for the best case (compositional parameters in red). 

Parameter 
Untuned Tuned 

Value Value 

Maximum Timestep Size, days 365 31 

Minimum Timestep Size, days               

Normal Variation in Pressure per Timestep, kPa 1000 1400 

Normal Variation in Saturation per Timestep, 
dimensionless 

0.15 0.1625 

Normal Variation in Global Composition, dimensionless 0.15 0.06 

Maximum Change in Pressure per Timestep, kPa 10000 1,000,000 

Maximum Change in Saturation per Timestep, 
dimensionless 

0.5 0.95 

Maximum Change in Global Composition, dimensionless 0.5 0.95 

Convergence of Newton's Method, dimensionless 0.001 1 

Convergence Tolerance for Linear Solver - Globally, 
dimensionless 

       0.001 

Threshold Adaptive-Implicit Switching to water 
saturation or hydrocarbon global mole fractions, 
dimensionless 

1.0 0.1 

Maximum Number of Linear Iterations, dimensionless 40 100 

Maximum Number of Orthogonalizations, dimensionless 80 200 

 
Table 4. Risk analysis, uncertainty levels, and probabilities for technical attributes. 

Attribute Type 

Levels  
(Probability) 

0 
(0.33) 

1 
(0.33) 

2 
(0.33) 

System Availability 

Platform 0.95 1.00 0.90 

Group 0.96 1.00 0.91 

Producer 0.96 1.00 0.91 

Injector 0.98 1.00 0.92 
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elapsed time of 21,707 seconds (6 hours). That 
provides a time gain (default model) of about 48%. 

Step 11 – Results of risk analysis application in 
terms of computational time 

Five hundred models of the same reservoir 
were generated for risk analysis with the discrete 
Latin hypercube model based on the following 

properties and technical attributes: First, system 
availability for the platform (Table 4), group of 
wells, producer, and injector wells. Secondly, in 
addition to system availability were included in the 
latin hypercube model generation continuous 
geological attributes, like rock compressibility 
(Table 5). Thirdly, discrete geological attributes 
(Table 6) were included, such as porosity and 

 
Table 5. Risk analysis, uncertainty levels, and probabilities for continuous geological attributes. 

Attribute Unit Probability Density Function (PDF) 

Rock compressibility (cf,), (10
-6 

) (psi)
-1

 

 ,        

      

      
               

      

     
               

 ,         

 
Table 6. Risk analysis, probabilities and uncertainty levels for discrete geological attributes. 

Attribute 

Levels (Probability) 

0 
(0.60) 

1 
(0.20) 

2 
(0.20) 

Geostatistical Realization (Image) 500 equiprobable realizations 

Relative Permeability Curves Kr0 Kr1 Kr2 

 

  

(a) (b) 

  

(c) (d) 

Figure 11. Step 11: Application – statistical analysis before and after the NT for 500 models. 
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permeability image realizations and relative 
permeability curves. 

As illustrated in Figure 11a, there was an overall 
decrease in time for all realizations. Figure 11b 
shows an overall improvement in global 
performance. Figure 11c shows the near 
elimination of timestep cuts, and Figure 11d shows 
the elimination of solver convergence failures. 

All 500 models were run and, as can be seen in 
Figure 12, an average 82% of computational time 
was saved. The previous simulation time (with 12 
processors) was 729 hours and, after the tuning, 
this time fell to 132 hours, considering both the 
model training set of 292 runs plus the 500 models 
optimized runs, 40 hours for the procedure, and 92 
hours for the ensemble run. 

 

5. CONCLUSIONS 

In this proposed manuscript, we discussed the 
improvements in the numerical modeling of 
compositional flow for a compositional simulation 
model of a type III carbonate reservoir, with a WAG 
injection scheme with total recycling of produced 
gas. 

This improvement contribution provides a 
methodology with the capability to include both 
compositional and black-oil numerical solver 
parameters in every step of the numerical tuning 

optimization for a broader and more robust model. 
The novelty of this work also lies in achieving good 
performance improvements for a complex 
compositional case study. 

This methodology is straightforward, has a 
broader application, and is more comfortable to 
use even for geoengineers with no reservoir 
simulation background. Employing submodels as a 
part of the methodology has proven useful for 
optimizing the numerical parameters of a 
compositional simulation model of a type III 
fractured carbonate reservoir, with the WAG 
injection scheme with total recycling of produced 
gas. From the submodel method, we achieved 
significant speedup gains since the single run of the 
base case simulation model was not accepted 
based on the defined criteria.  Apart from this, it is 
simple and can be reproduced and applied to other 
simulation cases, showing the potential to reduce 
the daily computational effort of activities in 
reservoir engineering. 

We were able to improve the numerical 
efficiency of compositional models in complex 
cases and achieve a comparable bulk gain in 
probabilistic risk analysis. The method considerably 
reduced the computational time spent on a 
compositional complex study. 

The results of numerical optimization applied to 
a risk analysis study showed a remarkable amount 
of saved time obtained for five hundred simulation 
runs. The computational time saved is expected to 

 

Figure 12. UNISIM-II-D-CO-WAG: briefing of application results. 
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rise proportionally to new applications performed 
using the optimized case with more runs. 

To conclude, we demonstrated that there are 
still shortcomings to simulator automatic numerical 
tuning routines. Simply using automatic calibration 
with default options hinder numerical 
performance, while our robust approach with no 
automatic routine offers more advantages. We can 
also conclude that the objective of this option in 
the commercial simulator is not to result in an 
optimization of a numerical model, but the 
improvement of the model’s run time in 
comparison to the full default numerical one 
adopted by scientists and geoengineers, who may 
have no frequent contact with this option in the 
commercial simulator. This further emphasizes the 
importance of our methodology to obtain 
consistent and efficient models. 
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